80 research outputs found

    Relationships between circulating leucocytes and Leucocytozoon simondi in mallard, Anas platyrhynchos, ducklings

    Get PDF
    Leucocytozoon simondi is an apicomplexan blood parasite of waterfowl that frequently causes significant mortality, and thus is expected to provoke a significant immune response in hosts. Using blood smears collected in consecutive weeks from 30 wild-stock mallard, Anas platyrhynchos, ducklings, we tested with repeated measures analyses for associations between leucocyte profiles and L. simondi infection intensities. With each of the five weeks of leucocyte profiles as response variables, we found evidence of fewer circulating heterophils and more circulating lymphocytes in the third week of infection associated with more intense L. simondi infections from the second week, but no significant relationships between leucocytes and the other four weeks of L. simondi infection. With each of the five weeks of L. simondi infection intensities as response variables, we found no associations with leucocyte profiles. Collectively, our results did not reveal tight links between leucocyte profiles and parasitism by L. simondi. Our data suggest that L. simondi was relatively benign to our wild ducks

    Lesser snow goose helminths show recurring and positive parasite infection-diversity relations

    Get PDF
    The patterns and mechanisms by which biological diversity is associated with parasite infection risk are important to study because of their potential implications for wildlife population's conservation and management. Almost all research in this area has focused on host species diversity and has neglected parasite diversity, despite evidence that parasites are important drivers of community structure and ecosystem processes. Here, we assessed whether presence or abundance of each of nine helminth species parasitizing lesser snow geese (Chen caerulescens) was associated with indices of parasite diversity (i.e. species richness and Shannon's Diversity Index). We found repeated instances of focal parasite presence and abundance having significant positive co-variation with diversity measures of other parasites. These results occurred both within individual samples and for combinations of all samples. Whereas host condition and parasite facilitation could be drivers of the patterns we observed, other host- or parasite-level effects, such as age or sex class of host or taxon of parasite, were discounted as explanatory variables. Our findings of recurring and positive associations between focal parasite abundance and diversity underscore the importance of moving beyond pairwise species interactions and contexts, and of including the oft-neglected parasite species diversity in infection-diversity studies

    Neonicotinoid insecticides severely affect honey bee queens

    Get PDF
    Queen health is crucial to colony survival of social bees. Recently, queen failure has been proposed to be a major driver of managed honey bee colony losses, yet few data exist concerning effects of environmental stressors on queens. Here we demonstrate for the first time that exposure to field realistic concentrations of neonicotinoid pesticides during development can severely affect queens of western honey bees (Apis mellifera). In pesticide-exposed queens, reproductive anatomy (ovaries) and physiology (spermathecal-stored sperm quality and quantity), rather than flight behaviour, were compromised and likely corresponded to reduced queen success (alive and producing worker offspring). This study highlights the detriments of neonicotinoids to queens of environmentally and economically important social bees, and further strengthens the need for stringent risk assessments to safeguard biodiversity and ecosystem services that are vulnerable to these substances

    西方蜜蜂研究的统计指南

    Get PDF
    In this article we provide guidelines on statistical design and analysis of data for all kinds of honey bee research. Guidelines and selection of different methods presented are, at least partly, based on experience. This article can be used: to identify the most suitable analysis for the type of data collected; to optimise one’s experimental design based on the experimental factors to be investigated, samples to be analysed, and the type of data produced; to determine how, where, and when to sample bees from colonies; or just to inspire. Also included are guidelines on presentation and reporting of data, as well as where to find help and which types of software could be useful.En este trabajo se proporcionan directrices sobre el diseño estadístico y el análisis de datos para todo tipo de investigación sobre abejas. Tanto las directrices como la selección de los diferentes métodos que se presentan están basadas, al menos en parte, en la experiencia. Este artículo se puede utilizar: para identificar el análisis más adecuado para el tipo de datos recogidos; para optimizar el diseño experimental basado en los factores experimentales a ser investigados, las muestras a analizar, y el tipo de datos que se producen; para determinar cómo, dónde , y cuando muestras abejas de las colonias, o simplemente para inspirar. También se incluyen directrices para la presentación y comunicación de los datos, así como dónde encontrar ayuda y distintos software que puedan ser útiles.在本文中,我们提供了针对蜜蜂所有研究的统计设计和数据分析指南。这些指南和方法的选择至少部分基于我们的经验。本文也可用于:针对收集到的数据类型选择最优分析方法;基于所研究的实验因素、待分析的样本和获得的数据类型优化实验设计;确定从蜂群中采集蜜蜂样本的地点、时间和方式;或者仅为实验提供参考。另外,也包含展示和报告数据时的指南,以及如何寻求帮助和选用何种软件。The University of Pretoria, the National Research Foundation of South Africa and the Department of Science and Technology of South Africa (CWWP).http://www.ibra.org.uk/am201

    Spatiotemporal Patterns in Nest Box Occupancy by Tree Swallows Across North America

    Get PDF
    Data from the North American Breeding Bird Survey (BBS) suggest that populations of aerial insectivorous birds are declining, particularly in northeastern regions of the continent, and particularly since the mid-1980s. Species that use nest boxes, such as Tree Swallows (Tachycineta bicolor), may provide researchers with large data sets that better reveal finer-scale geographical patterns in population trends. We analyzed trends in occupancy rates for ca. 40,000 Tree Swallow nest-box-years from 16 sites across North America. The earliest site has been studied intensively since 1969 and the latest site since 2004. Nest box occupancy rates declined significantly at five of six (83%) sites east of -78° W longitude, whereas occupancy rates increased significantly at four of ten sites (40%) west of -78° W longitude. Decreasing box occupancy trends from the northeast were broadly consistent with aspects of a previous analysis of BBS data for Tree Swallows, but our finding of instances of increases in other parts of the continent are novel. Several questions remain, particularly with respect to causes of these broad-scale geographic changes in population densities of Tree Swallows. The broad geographic patterns are consistent with a hypothesis of widespread changes in climate on wintering, migratory, or breeding areas that in turn may differentially affect populations of aerial insects, but other explanations are possible. It is also unclear whether these changes in occupancy rates reflect an increase or decrease in overall populations of Tree Swallows. Regardless, important conservation steps will be to unravel causes of changing populations of aerial insectivores in North America

    Constructing and evaluating a continent‐wide migratory songbird network across the annual cycle

    Get PDF
    Determining how migratory animals are spatially connected between breeding and non‐breeding periods is essential for predicting the effects of environmental change and for developing optimal conservation strategies. Yet, despite recent advances in tracking technology, we lack comprehensive information on the spatial structure of migratory networks across a species’ range, particularly for small‐bodied, long‐distance migratory animals. We constructed a migratory network for a songbird and used network‐based metrics to characterize the spatial structure and prioritize regions for conservation. The network was constructed using year‐round movements derived from 133 archival light‐level geolocators attached to Tree Swallows (Tachycineta bicolor) originating from 12 breeding sites across their North American breeding range. From these breeding sites, we identified 10 autumn stopover nodes (regions) in North America, 13 non‐breeding nodes located around the Gulf of Mexico, Mexico, Florida, and the Caribbean, and 136 unique edges (migratory routes) connecting nodes. We found strong migratory connectivity between breeding and autumn stopover sites and moderate migratory connectivity between the breeding and non‐breeding sites. We identified three distinct “communities” of nodes that corresponded to western, central, and eastern North American flyways. Several regions were important for maintaining network connectivity, with South Florida and Louisiana as the top ranked non‐breeding nodes and the Midwest as the top ranked stopover node. We show that migratory songbird networks can have both a high degree of mixing between seasons yet still show regionally distinct migratory flyways. Such information will be crucial for accurately predicting factors that limit and regulate migratory songbirds throughout the annual cycle. Our study highlights how network‐based metrics can be valuable for identifying overall network structure and prioritizing specific regions within a network for conserving a wide variety of migratory animals

    A communal catalogue reveals Earth’s multiscale microbial diversity

    Get PDF
    Our growing awareness of the microbial world’s importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth’s microbial diversity

    Global assessment of marine plastic exposure risk for oceanic birds

    Get PDF
    Plastic pollution is distributed patchily around the world’s oceans. Likewise, marine organisms that are vulnerable to plastic ingestion or entanglement have uneven distributions. Understanding where wildlife encounters plastic is crucial for targeting research and mitigation. Oceanic seabirds, particularly petrels, frequently ingest plastic, are highly threatened, and cover vast distances during foraging and migration. However, the spatial overlap between petrels and plastics is poorly understood. Here we combine marine plastic density estimates with individual movement data for 7137 birds of 77 petrel species to estimate relative exposure risk. We identify high exposure risk areas in the Mediterranean and Black seas, and the northeast Pacific, northwest Pacific, South Atlantic and southwest Indian oceans. Plastic exposure risk varies greatly among species and populations, and between breeding and non-breeding seasons. Exposure risk is disproportionately high for Threatened species. Outside the Mediterranean and Black seas, exposure risk is highest in the high seas and Exclusive Economic Zones (EEZs) of the USA, Japan, and the UK. Birds generally had higher plastic exposure risk outside the EEZ of the country where they breed. We identify conservation and research priorities, and highlight that international collaboration is key to addressing the impacts of marine plastic on wide-ranging species
    corecore